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PROCEDURE FOR SMOOTHING MPSI STRESS STRAIN CURVES

INTRODUCTION

In Phase I of the Mechanical Properties of Sea Ice (MPSI) program,
approximately 240 uniaxial constant strain rate compression tests were
conducted. These tests were recorded on a FM magnetic tape recorder.

It was necessary to digitize the analog magnetic tapes in order to
employ a computer analysis of the data. After digitization, the data
were processed further by fitting cubic splines to the digital data from
each test. This step serves three purposes:

1. Cubic splines provide a more efficient means of storing the

data,

2. any noise in the data is filtered out, and

3. application of constitutive models to ice requires an analytical

description of the stress-strain curve.
The following account describes the procedures employed in obtaining the
smooth stress strain curves from the digitized data. The procedures

describing the digitization process will be documented later.

CUBIC SPLINES

The cubic splines for each test are found by employing the IMSL
subroutine ICSVKU. This subroutine requires that the range of the
independent variable, t, be divided into (k-1) intervals by selecting
k knots, ti’ i=1,2,...,k. The subroutine then calculates a cubic spline
Si for each interval. Taken together, the splines form a (k-1) branched
composite function, F(t), which is continuous and has continuous first
and second derivatives at each intermediate knot. The cubic splines are
chosen so that the composite function minimizes the least squares error
of the approximation to the digitized data.

Each spline, Si’ is referred to a local coordinate system, (Ei, Si(Ei))

whose origin is located at the point (ti,O). To evaluate the composite
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function at the point t=t, one must first find the knot interval,
Ii: t, st < tipye in which the point lies. Once this interval is
found the function is evaluated by the equation,

s;(8p) = [(Og3 &5 *+ Cp) B+ €y )8 + vy e}

= -— < .
where gi t ti’ 0< ¢

< t
l_

i+1 " by

Here Ci3’ Ciz’ 1

respectively of the local independent variable, Ei' The quantity, Vi

and Ci are the cubic, quadratic, and linear coefficients,
denotes the initial value of the spline in the local coordinate system.
These quantities are returned by the subroutine and represent the best

fit of the data on the interval, ti <t< ti The (k-1)x3 matrix Cij’

the (k-1) dimensional vector Yyo and the k d:iensional vector t, will
completely specify the composite function, F(t). These quantities will
be tabulated in data files for each test. A schematic diagram of the
composite function and cubic splines is found in Figure 1.

The successful use of splines to approximate a data set is dependent
on the choice of knots. The subroutine ICSVKU is a variable knot routine
which optimizes the knot locations after an initial guess is made for
the knots. The IMSL library package also contains several subroutines
which evaluate the splines, take first and second derivatives, and
integrate. However, it is not necessary to have access to the IMSL

library package to perform these calculations, since it is an easy task

to program Equation (1) if given the quantities Cij’ Yi» and ti.

TEST MEASURFEMENTS

In Phase I, the uniaxial compression tests were conducted at strain

rates, é, of 10_5/sec and 10—3/sec, and temperatures, O, of —5°C and
-20°C. Each test sample was loaded at a constant strain rate until
either the sample failed or the strain reached 5%. The shape of the
stress strain curve is highly dependent on strain rate and much less
dependent on temperature. Consequently, for the purpose of curve

fitting, we will only consider the two strain rates to be the test
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Fig. 1 - Typical spline fit to experimental data.



conditions. All observations or conclusions regarding tests at a given
strain rate will apply to both temperatures. In the following, two
tests are chosen to be typical examples of the results from each of the
two strain rates. Test number R5A-165/191 will represent the 10-5/sec
tests and test number R4B-299/325 will represent the 10—3/sec tests.

In each test, a load cell recorded the axial force as a function of
time. The axial displacement was also recorded as a function of time
with an extensometer and two DCDT's. The extensometer recorded displace-
ments over the full sample length (10 in.) and was used as the feedback
control on the closed loop testing machine. The two DCDT's were mounted
on the ice sample 180° apart with a 5%" gauge length. The calibrated
output from the load cell is converted to stress by dividing by the
original cross sectional area of the sample and the calibrated output
from the axial displacement transducers is converted to strain by dividing
by the appropriate gauge length.

In Figures 2 and 3, the strain recorded from each axial displacement
transducer is recorded as a function of time for each strain rate. At
the beginning of each test, there is close agreement between all three
transducers, but there is a point at which the output of the two DCDT's
begins to diverge from the extensometer. This point is usually just
prior to the peak force. Ideally for a constant strain rate test, the
DCDT's should produce linear measurements similar to the extensometer
throughout the test. However, at times corresponding to the peak force,
the ice begins to undergo nonhomogeneous deformations characterized by
highly localized bulging and fracturing. Since the DCDT's are attached
directly to the ice, their nonlinear measurements are a direct result of
the nonhomogeneous deformations. For this reason the measurements from
the DCDT's should not be considered dependable beyond the initial portion
of the test. The extensometer, on the other hand, measures the relative
displacement of the endcaps and its measurements should be interpreted
as the average displacement over the sample length. Since we are interested
in constant strain rate up to 5% strain, only the extensometer will be

used to measure axial displacement.
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The complete time histories for the load and strain measured from
the extensometer are shown in Figures 4 and 5 for each strain rate. The
force histories for each strain rate are plotted on the same coordinate
axes in Figure 6 to illustrate the change in shape with strain rate. As
will be seen later, the differences in shape will require slightly

different fitting techniques for each strain rate.

FITTING PROCEDURES FOR FORCE-TIME CURVES

When conducting an experiment, the experimentalist attempts to
create an idealized situation to obtain measurements for use in a theo-
retical model or hypothesis. But, because of experimental limitations,
it is usually impossible to create these ideal situations, causing some
discrepancies between experiment and theory which should be accounted
for. in the data analysis.

To illustrate some of the discrepancies arising the uniaxial
compression tests, consider Figures 7-10 which show enlarged views of
the force and strain measurements near the beginning of each test. 1In
Figures 7 and 9, the force increases from zero at time, t=0, as expected
whereas in Figures 8 and 10 the axial displacement does not increase
from zero until approximately t=8 sec for the.lo_s/sec tests and t=0.3
sec for the 10_3/sec tests. This apparent discrepancy in the starting
time is due to the finite amount of time required for the machine to
overcome the initial condition of being at rest and then reach a steady
state condition of constant strain rate. Figures 7 and 9 also show the
initial curvature (i.e. the second derivative) of the force-time curves
to be positive. This initial positive curvature is partly due to the
initially nonconstant strain rate and is partly due to the elastic
closure of voids and microcracks which acts to stiffen the material
response. Because of the positive curvature, the maximum slope would
occur sometime after the beginning of the test. This contradicts
constitutive theories (e.g. elasto-plasticity, viscoelasticity, etc.)
commonly used to describe materials having nonlinear stress-strain
curves. These theories assume the maximum slope occurs at the beginning

of the test and represents the initial elastic response of the material.
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With the previous problems in mind, procedures were developed to
accomplish the following tasks:

1. Obtain accurate measurement of the mechanical properties. The
properties of major interest from the stress-strain curves are
the peak stress, the maximum slope, and the residual stress.

2. Develop a systematic method to resolve the discrepancy in the
start time of the force and axial displacement measurements.

3. Generate stress-strain curves whose initial slope is the
maximum slope. In doing this, we are in effect editing out
the initial positive curvature in the data. Although it is
recognized that this feature is an intrinsic material property
in geological materials such as rock, we do not feel that the
exclusion of this feature will have an effect on ice loads
calculated from these edited stress-strain curves.

The subroutine ICSVKU finds cubic splines which minimize the least
squares error of the entire curve. This, however, does not guarantee a
good local fit. When applying the subroutine to the entire data set of
digitized points, good fits are consistently obtained for the points
beyond the peak force and poor fits are found for the points up to and
around the peak force. The poor fit at the beginning is a result of the
subroutine's preference to fit the smooth portion of the curve beyond
the peak force rather than the initial portion where the slope changes
rapidly from zero at t=0, reaches a maximum, and goes back to zero at
the peak. It is by far easier to minimize the global least squares
error by finding a good fit in the smooth post peak area where a majority
of the points are located rather than fit well the few points near the
origin. Attempts at improving the initial fit by adding more knots near
the origin or weighing the initial part with more points failed to
achieve consistent results.

To insure an accurate curve fit for the beginning of the force-time
data set and hence an accurate measurement of the maximum slope, a
primary smoothing is made for the initial part of the data only. This

is done by creating a subset of points from the entire data set for each
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strain rate. For the lo—s/sec strain rate all points for the first

40 sec comprise the subset for primary smoothing. The subset for the
10_3/sec tests consists of all points to the peak minus the first and
last few points to eliminate the portions of the subset which would have
zero slopes. The resulting subsets for each strain rate then form a'
smooth monotonically increasing data function which can be accurately
fitted with splines. The subset for each strain rate is then divided
into four intervals by selecting five equally spaced knots. Cubic
splines are then found for each interval and the maximum slope is found
by calculating the slope at the inflection point. Figures 11 and 12
show the data points in each subset, the fitted curve, and the tangent
at the point of inflection for the primary smoothing.

A secondary smoothing is then made by creating another data subset
for each strain rate consisting of all points to the right of the
inflection point. The first few points of the subset are then deleted
to insure that the initial slope of the secondary smoothing is less than
the previously calculated maximum slope. The.lO-S/sec data subset is
divided into ten intervals and the 10—3/sec data set is divided into
nine intervals. Cubic splines are then found for each interval. These
splines are then considered final for that portion of the force-time
curve,

The next task is to construct an additional spline which connects
the initial point of the secondary smoothing with the time axis. This
spline is constructed without regard to the data points prior to the
initial point of the secondary smoothing since those points represent
the portion of the curve with positive curvature.

The first step in this procedure is to shift the knot index, 1, of
the quantities returned by the subroutine for the secondary smoothing.
The shift is made by increasing the index by one, so that ti’ becomes
t2’ Yy becomes Yos Clj’ j=1,3, becomes CZj’ etc. The secondary smoothing
is now described by (k-1) splines Si(gi), i=2, k. A schematic diagram
illustrating the additional spline along with the secondary smoothing is

shown in Figure 13.
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SECONDARY SMOOTHING

83-228-4
ADS/SC
DORRIS

Fig. 13 - Schematic diagram of the location of the additional

spline with respect to the secondary smoothing.

[}
~ 1 =—— ADDITIONAL SPLINE
t,Eq,...



20

To construct the additional spline, Sl(El), a local coordinate
system is set up at the point (tz—Tl,O). The independent variable for
this coordinate system is El and covers the range Ogglle. The spline,
Sl(il), is found by constructing a cubic polynomial which satisfies the

following conditons:

1. 5,(0) = 0
2. 5,0 =F

3. 5,0 =T 2
4. 81(Ty) = 8,(0) =y,

5. 5,(1)) = 5,(0) = Cyy

6. 5,(1) = 5,(0) = 2C,,

1
Here Emax denotes the maximum slope calculated from the primary smoothing.

Although the cubic polynomial which we are trying to construct is described
by four unknown constants, the six conditions shown above can be satisfied

t

since the quantities T, and Fo are also considered as unknowns.

1

Successive elimination of the unknowns in the above conditions can
11

yield a quadratic equation in Fo with ?he coefficients being algebraic
combinations of the known quantities Fmax’ Yoo 021, and sz. Solution
of this quadratic equation will yield two solutions for Fo. If one of
these solutions is negative then that solution is chosen to be the
correct solution. With F:<0, we are guaranteed that the curvature of
sl(gl) will be negative since we have fequired that the initial slope of
the secondary smoothing be less than Fmax' Once the additional spline,
Sl(il), is determined the smoothing procedure is complete. Figure 14
illustrates the smooth curve obtained for the 10™°/sec test using this
procedure. Figure 15 is an enlarged view of this curve to illustrate
the initial negative curvature of the smooth curve and the continuity at

the initial point of the secondary smoothing.
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"
In the event that the quadratic equation for Fo yields two positive

solutions or two imaginary solutions, the conditions in Equations (2)
can be relaxed by adding two splines to the secondary smoothing instead
of one. 1In this case the knot indices, i, for ti’ Yio and Cij’ j=1,3,
are shifted by two. TFigure 16 illustrates the location of the additional
splines after the index shift has been made.
To construct the spline adjacent to the initial point of the secondary
3—T2,0).
The independent variable for this coordinate system is 52 and covers the

smoothing, a local coordinate system is set up at the point (t

range OfEZfTZ. The spline, SZ(EZ) is found by constructing a cubic
polynomial which satisfies the following conditions:
* |
1. S, O =F_,

"
2. 5,00 =0,

3. 8,(1) = 55000 = v5, @)
1 )

4. SZ(IZ) = 83(0) = C3l,
" "

5. S,(T,) = 5,(0) = 20,

The above five conditions are sufficient to solve for the four unknown
constants of the cubic polynomial and the unknown time quantity, TZ‘
Since the inital point of the secondary smoothing is a few points to the
right of the inflection point of the primary smoothing, the quantity,
(t3—T2) roughly corresponds to the time at which the inflection point
occurs in the experimental data.

In a similar manner the spline to the left of SZ(EZ) is found by
setting up a local coordinate system at the point, (t3—T2-T1,0) for the

independent variable, &.,, which covers the range, OfglfT . The spline

1
Sl(il) is found by constructing a cubic polynomial which satisfies the

following conditions:
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Fig. 16 - Schematic diagram of the location of the two
additional knots with respect to the secondary smoothing.



25

1. 500 =0,

2. 5,(0) =F__,

3. s'l'(O) =0, (%)
4o 5.(T)) = 5,(0),

5. S;(Tl) = S;(O) = Fl;ax.

These five conditions .are sufficient to find the four unknown constants
of the cubic spline, sl(gl), and the unknown time quantity, Tl’ Note
that the application of conditions 3 and 5 in Equations (3) collapses
the cubic polynomial into a linear curve which automatically forces
continuity of the second derivative at Tl'

After the two additional splines are found the smoothing procedure
is completed. TFigure 17 illustrates the type of fit obtained for the
10—3/sec test using the additional two knot procedure. Again, an enlarged
view of the fit is shown in Figure 18 to illustrate the initial linear
portion of the smooth curve and the continuity at the initial point of
the secondary smoothing.

The particular technique used to determine the initial portion of
the smooth curve depends on the initial conditions of the secondary
smoothing and the maximum slope found in the primary smoothing. As a
general rule, the shape of the 10_3/sec tests is such that two additional
knots areirequired to supplement the secondary smoothing. On the other
hand, the 107°/sec tests seem to favor the technique requiring only one
additional knot although a few of those tests were found which required
two knots to complete the smoothing.

Regardless of the technique used to find the initial portiomn, the
start time of each test is determined by shifting the global force-time
coordinate axes to coincide with the local axes, (El,s(gl)). The shift
is easily made with the coordinate transformation, t=t-At, where
At=t2--T1 when one additional knot is required and At=t:3—T2—'I.‘_1 when two
additional knots are required. The quantity At is illustrated for each

technique in Figures 13 and 16. The previously determined splines are
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valid in the new coordinate system as long as a similar transformation
is(made for each knot, i.e. Ei=ti—At. The amount of the time shift, At,
is on the order of 8 sec for the 10-5/sec tests and 0.2 sec for the
10_3/sec tests., In each case the time shift ié within the uncertainity
of the start time.

After the time shift, the resulting function F(E) represents the
force history of the entire test. If the final number of knots is m,
then F(t) will consist of (m-1) branches, si(gi), defined on the intervals,
0s8;<tim
continuous first and second derivatives at every point. TFurthermore,

—Ei, where £i=E-Ei. The function, F(t), is continuous and has

the maximum slope of F(t) occurs at the origin and is equal to the
maximum slope of the experimental data. The composite function is
completely defined by the knots, Ei’ i=1,m, the initial wvalue of each
spline, Vi» i=1, (m~1), and the spline coefficients, Cij’ i=1, (m-1),
j=1,3. These values are tabulated in data files for each test and are
shown in Table 1 for test number R5A-165/191 and Table 2 for test number
R4B-299/325.

As a final step, the strain history is shifted by the amount, At.
Two knots are chosen at the beginning and end of the strain history and
a cubic spline is found by calling the subroutine. This step is un-
necessary since the strain history is linear for a constant strain rate
test, but it does provide a check on the test strain rate. The check is
made by comparing the coefficients returned by the subroutine. If the
cubic and quadratic coefficients are several orders of magnitude smaller
than the linear coefficient and if the linear coefficient is within 1%
of the test strain rate, then the test is considered valid.

Once this check is completed, the force-time curve, F(E) is used to
generate the stress-strain curve by scaling the coordinate axes. The
force axis is divided by the original cross sectional area of the test
sample and the time axis is multiplied by the test strain rate. The
stress-strain curve for test number R5A-165/191 is shown in Figure 19
and the stress-strain curve for test number R4B-299/325 is shown in

Figure 20.
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